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Irreversibility Paradox Revised: Onset of a 
Center Manifold in Dissipative Systems 
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A center-manifold-reduced Fokker-Planck equation is derived, starting from a 
time-reversible Liouville equation. The derivation is valid when there is a large 
separation of relaxation-time scales causing the phase-space contraction near a 
dynamic critical point. The paradox of breaking of time-reversal symmetry in 
the resulting Fokker-Planck equation at the onset of the center manifold is 
clarified. 

1. INTRODUCTORY REMARKS AND MOTIVATIONS 

We shall consider nonequilibrium systems whose macrostates are 
characterized by a set of thermal averages of  certain order parameters and 
the products of these order parameters. Specifically, we shall concentrate 
upon the case in which there exists a statistical subordination of the fast- 
relaxing macroscopic degrees of freedom of the system to the excited 
subordinated modes near a dynamic critical point (Fernfindez, 1986; 
Fernfindez and Rabitz, 1987). This phase-space contraction can be accOun- 
ted for by means of  the stochastic center manifold theory (Marsden, 1973; 
Fernfindez and Sinano~lu, 1984; Fern~ndez and Rabitz, 1987). For a 
sufficiently large separation of relaxation time scales, the system is confined 
to a locally attractive, locally invariant surface determined by the functional 
dependence of the fast-relaxing modes to the order parameters. The order 
parameters thus become the center manifold (CM) coordinates of the 
system. This treatment has already been implemented to determine the 
strength of  far-from-equilibrium fluctuations at the onset of a dissipative 
structure in chemical kinetics (Fern~indez and Sinano~lu, 1984). Further- 
more, it has become useful in the realm of  Rayleigh-B6nard convection, in 
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particular, to elucidate the role of random sources in the transition to a 
convective roll pattern (Fermindez and Rabitz, 1987). The analysis reveals 
that any extrapolation from near-equilibrium situations making use of a 
Langevin source is of no avail, the fluctuations being at least three orders 
of  magnitude larger than their equilibrium counterparts (Fermindez and 
Rabitz, 1987). 

The problem we shall deal with can be best posed as follows: How can 
a nonequilibrium Fokker-Planck (FP) equation for the order parameters be 
derived from the time-reversible Liouville equation for the microstate probability 
distribution function ? 

We shall show that the paradox of the emergence of irreversibility at 
the onset of the CM can be explained since the breakdown of the time-reversal 
symmetry is introduced in the boundary condition: The causal character of 
the solution is given by the coincidence of the microstate probability distribution 
function with a CM microstate distribution in the remote past. The CM 
microstate distribution is determined by the probability distribution for the 
order parameters and it does not depend explicitly on the coordinates and 
momenta of the individual particles, but only on the order parameters. 

2. BASIC TENETS OF CM THEORY AND THE CONSTRUCTION 
OF THE CM MICROSTATE DISTRIBUTION 

In order to fix notation, let us denote by X the vector of macrovariables. 
Upon a nonsingular transformation, we shall assume the system is already 
in Poincar~-Jordan normal form, that is, the Jacobian matrix of the system 
at the nonequilibrium state is in Jordan normal form (Marsden, 1973; 
Fernfindez and Sinano~lu, 1984; Fernfindez and Rabitz, 1987). In other 
words, the fast-relaxing degrees of freedom have been separated from the 
enslaved coordinates and the following decomposition holds: 

x- -x~+xs  (1) 

where X~ denotes generically the vector of CM coordinates and Xf denotes 
the vector of fast-relaxing degrees of freedom. One of the basic tenets of 
the CM theory is that after a transient equal to the supreme of the relaxation 
times for the fast modes, the following relation holds: 

(X~) = 6 ( ( X ) ,  ((XiXk)},  ( (X~XkX. )}  . . . .  ) (2) 

where X~(i= 1, 2 . . . .  , s) is a component of the vector Xs, Fj is the CM 
function determining the functional dependence that characterizes the statis- 
tical enslavement of the fast-relaxing degrees of freedom Xj~ (Fernfindez 
and Rabitz, 1987), and the angular brackets denote a thermal or statistical 
average. The second basic tenet of the CM theory is that the probability 
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density functional P = P(X, t) can be factorized as follows: 

P = O ~ x Q :  (3) 

O~ = Q ~ ( x .  t) (4) 

Q:=Q:(Xf lX , )  

= [I (g:/cr) 1/2 exp[-gj(X~ -(X~)) 2] (5) 
j ~ l  

The last equation admits a rigorous derivation and it reveals that the 
fast-relaxing degrees of freedom are distributed along a strip of width 
w = ( 2 g j )  1/2 along the CM. Thus, the time-dependent factor represents the 
statistical subordination and it is given in the form of a conditional probabil- 
ity Gaussian peaked at the CM. 

The smeared FP equation for Q~ can be obtained upon integration of 
the general FP equation satisfied by P along the CM, that is, by integration 
with respect to the fast-relaxing variables, making use of equation (5). We 
now introduce a microstate distribution induced by Q~. This distribution 
will be called the CM microstate distribution and will be denoted fl = fl (t). 
This functional is not explicitly dependent on the position and momenta 
of the individual particles; it depends on them through Xs. It has the general 
form 

fl(t) = e x p [ - N ( t )  - B(X's, t)] (6) 

where N(t)  is found from the normalization condition and B(X's, t) is 
determined by imposing the condition that the thermal average with respect 
to fl of 8(X ' , -Xs )  should be the same as the true average with respect to 
the microstate distribution function p(t): 

( 6 ( X ' ,  - X~) )~  = ( 6 ( X ' ,  - X~) )  (7 )  

In this equation it is understood that Xrs corresponds to the order parameter 
vector, dependent on the positions qm and on the momenta Pm of the 
individual particles; and that X~ is a specific value of the vector X'~. In 
what follows, I ( . )  shall denote integration over the coordinates and 
momenta of all the particles with the normal factor I / (h  3N. N!). Thus, 
from equation (7), we can derive the equation for/3: 

~(r = f [z(~(x'~-x~))]-'Q(X. t) ~(x'~-x~) ax~ (8) 

This last result follows from the obvious relation 

(8(X's-Xs))  = Qs(Xs, t) (9) 
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3. DERIVATION OF THE SMEARED FP EQUATION FOR Qs 
STARTING FROM THE LIOUVILLE TIME-REVERSIBLE 
EQUATION 

We shall show that the source of irreversibility in the procedure of 
derivation of  a smeared FP equation for the order parameters does not 
come from the Liouville equation, but from the causal character of the 
boundary conditions imposed. The starting point is the Liouville equation 
for p(t) :  

O p ( t ) +  iLp(t)  =0  (10) 

where L is the Liouville operator: iLp = {H, p}, with H the Hamiltonian of 
the system. 

The source of irreversibility is introduced by assuming that, in agree- 
ment with the CM reduction, the solution of equation (10) coincides with 
the CM microstate distribution at the instant to in the remote past: 

p( t ) = e x p [ - i L (  t - to)]/3 (t0) (11) 

In order to get rid of this unphysical dependence on the initial moment to, 
we introduce a smoothing procedure by averaging over all initial moments 
t~ between to and t: 

p( t )  = T -x e x p [ - i L ( t -  t;)] r dt'o, T = t - to (12) 
to 

that is, over the length of time T which is very near the thermodynamic 
limit T ~  oo (Bogolyubov, 1978). 

But this procedure leads to a breakdown of the time-reversal symmetry, 
since the function given by equation (12) is a solution not of the Liouville 
equation in its original form, but of a new equation containing an 
infinitesimal source describing the relaxation of p( t )  to the CM: 

0 
~ t p +  iLp = - T - l [ p ( t )  - /3  (t)] (13) 

This relaxation to the CM has an extremely slow mean time if we 
operate near the thermodynamic limit. Therefore, the source ofirreversibility 
due to "contamination" with the phenomenological CM contraction can 
be made arbitrarily small. 

In the spirit of  Mori's projection operator formalism (Kawasaki, 1970; 
Mori, 1965), we shall define a projector in order to restrict the system to 
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the CM, that is, we transform a microstate distribution A into an order 
parameter distribution UA: 

UA= f [I(6(X'~-X~))]-~I(A~(X'~-Xs)) ~(X's-X~) dXi- (14) 

UA = UA(X's, t) (15) 

It can be readily verified that this operator is a projection operator and that 
it has the additional properties 

Up=~3 (16) 

U/3 =/3 (17) 

Therefore, we can write an equation for/3 in the compact form 

0 
~ ~ = Up = - U i L ( p - / 3 ) -  UiLfl (18) 

Making use of this formalism, we can now derive the generalized force 
M(X,) responsible for the diffusive pressure produced by the far-from 
equilibrium fluctuations. This diffusive pressure competes with the deter- 
ministic fast drift toward the CM determined by the separation of relaxation 
time scales. Therefore, the generalized forces determine the Gaussian width 
of the probability density QF about the CM. In other words, these forces 
are orthogonal to the CM: 

M(X~) = ( 1 -  U) 6(X'.-Xs) itX's (19) 

The conjugated fluxes, orthogonal to the CM, are 

0 
J(Xs) = - M(Xs) = (1 - U)iL~(X's-Xs) (20) 

ax~ 

The thermal average of  the fluxes is therefore given by 

xexp[T-l( t ' - t )]  K(X 's ,X .  t-t ')V(X's,  t') (21) 

where the kernel K is given by 

K(X's, Xs, t) = I(M(Xs) exp[(1 - U)itL] M(X'))  (22) 

and 

V(X's, t) = aX--~ \ L(X's) ] (23) 
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where 

L(Xs) = I(~(X's - Xs)) (24) 

Finally, the speed of the order parameters is given by 

W(Xs) = I(  8 (X ' s -  Xs)iLX'~)/ L(Xs) (25) 

Thus, we arrive at the retarded FP equation for Qs: 

0 0 
0--~ Q~(Xs, t )= - - ~  W(X~)Q~(X~, t )+(J(X~))  (26) 

The explicit form of the thermally averaged flux orthogonal to the CM is 
given explicitly in equation (21). This equation is exact and it is derived 
from first principles, the projection operator U being formally the same as 
the Zwanzig operator (Kawasaki, 1970; Mori, 1965) (the set of macrovari- 
ables is reduced to the CM coordinates). 

Not surprisingly, the smeared FP equation (26) reveals a breakdown 
of the time-reversal symmetry. There is no contradiction in this fact, since 
the boundary conditions reflected in equation (11) for the solution of the 
Liouville equation were introduced apriori, taking into account the attractive 
nature of the CM. This is the source of irreversibility, since the onset of a 
center manifold is in itself irreversible. The relevance of  this work for the 
analysis of dissipative structures in chemical kinetics far from equilibrium 
is clear once we recognize that a dissipative structure can be associated 
with a CM in a natural way (Marsden, 1973; Fernfindez, 1986; Fernfindez 
and Sinano~lu, 1984; Fernfindez and Rabitz, 1987). 
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